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We develop lemmas which clarify the possibility of approximating extremal strategies 
in a differential game involving encounter with a specified set M. The study constitutes 

an extension of [1-141. 

1. Let us consider a controlled system described by the differential equation 

ax/at = pyt, z, u) +f@‘(t, 2, v) (1.1) 

Here z is the n-dimensional phase vector of the system; U, u are the r-dimensional 
vectors of the controlling forces at the disposal of the first and second player, respectively. 

The realizations u [t] and u [t] of the controls u and u are restricted by the condition 

U it1 E u, 2, tt1 E v (1.2) 
where U and V are bounded closed sets ; the functions f(*) are continuous in all their 
arguments and satisfy the Lipschitz conditions in I. (The argument t will be enclosed 

in square bracket to indicate that we are dealing with the realizations of the correspond- 

ing functions during the playing of the game; as a rule, this argument will be enclosed 
in parentheses in expressing functions which occur in ancillary constructions). 

Our purpose in the present paper is to discuss certain aspects of the conflict problem 
of the convergence of the point z [t] to a specified closed set M, the first player’s aim 

being to achieve convergence and the second player’s aim to avoid it. Let us define the 

problem in more specific terms. 
We shall be concerned with strategies U forming the controls US [t] which remain 

constant over certain sufficiently small half-intervals [Ti, 71+x). We shall say that we 

have chosen a strategy (an approximating strategy U) if for every sufficiently small 

A > 0 each pair {t, z) (to < t (6, -co <xi < co, i = 1, 2, . . . . n) is 
associated with some set UA(t, r) c U. The strategy u forms the A-controls us [t] 
in the following way. 

We introduce the half-interval [to, 6) covered by the system of half-intervals 

[ T!, T~+~) (i = 0, 1, 2, . . . . z, = t,, max (~1~~ -pi) = A). Then 

UA [t] = UA [Zil E Ua (Ti, 2 Nil) (‘i d ’ <iTi+,) (i.3) 

where x [TV] is the phase state of system (1.1) which is realized at the instant t r= Ti 

through the action of the control u1 [tl and of some control ZI [tl realized by the second 
player over the preceding half-interval [t,, TV). The choice of the control u~[‘Ci] from 

the set Ui (ti, n: [ti]) remains arbitrary. 
We shall use the symbol p (5, M) to denote the distance from the point J: to the set 

M. The integrable functions u (t) and u (t) satisfying the conditions u (t) E U and 
2, (t) Cr V will be called “permissible”. 

We say that for a given initial condition 5 it,,1 = x0 the strategy [J guarantees con- 
vergence of the point 2 [t] to the set _u at an instant 19 if the motions 5 [t] generated 
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by this strategy satisfy the condition 

limsup sup sup p (5 [6], M) = 0 
1-4 V[i] U3. 

(1.4) 

We say that for a given 5 [t,] = t,, the strategy U guarantees the convergence of 

the point x [t] to the set Mnot later than at an instant 6 > t,, if the motions x [t] 

generated by this strategy satisfy the condition 

lim ;“,p y; sup inf p(J:[t],M) -= 0 
,LA t 

(1.5) 

Here the upper bounds must be computed over all the possible permissible realizations 
v [t] and over all possible controls UA [t] (1.3) corresponding to a given strategy U; 
the lower bound in (1.5) must be. computed over all the t from the segment to< t .<6. 

The problem consists in constructing a strategy u which will guarantee convergence 
of the point x [t] to the set i%f at some instant 6 or not later than at some instant 6. 

2, Let us begin by defining some terms and symbols. Let each value t from some 
segment t, -< t:< 6 be associated with a closed set W (t) in the space (5). We say 

that the sets w (t) (to-< t -< 6) are strongly stable if the following condition is ful- 

filled. 
Condition d. 1. For any values of t, from the half- interval I&,, 6) any point 

s,from the set W (t*) , and any number A from the half-interval (0, min {AO, 6 - 

t,}] (where A0 is a sufficiently small positive constant) it is possible to choose for 
“y permissible fAction u (t) (t* < t < t, + A) a permissible function u (t) (t*< 
c< t <t, + A) such that the pair of controls {U (t), ZJ (t)} carries system (1.1) from 

the position z (t*) = Z* to the state x (t* + A) E W(t, + A). 
Let 111 c w (t). We call the sets w (t) (t, Y< t SC 6) “stable’if the following 

condition is fulfilled. 
Condition 2. 2. For any values of t, from the half-interval [to. s), any point 

q$rom the set w (t*) , and any number A from the half-interval (0,min (A,, 6 - .&, 

Ep (x*7 M)}] (where A0 and f are sufficiently small positive constants) it is possible 
to choose for any permissible function v (t) (t* -< t Cc t, + A) a permissible func- 

tion u (t) (t* CC t <t, -;- A) such that the pair of controls,{u (t), u (t)} carries 

system (1.1) from the position z (t*) = LC* to the state s (t* -I- A) lLz W (t* I- A). 
We introduce the following notation : 

e. (U) = lim ;u~ ;-up sup i:f p (5 [t], M) 
UA (2.2) 

Here the lower or upper bounds must be computed over all t from the segment [to. 01, 
over all permissible realizations v (t), and over all possible A-controls &j [t] (1.3) 
corresponding to the strategy US 

Let us construct the extremal approximating strategy U(e) based on the systems of 
sets w (t) satisfying either Condition 2.1 or 2. d. The sets u’,“(t, Z) corresponding to 
the strategy U(e) can be constructed as follows. If the point x lies in the set w (t), we 
set 

u2) (t, r) = u (2.3) 

If the point x does not lie in the set w (t), we proceed as follows. We isolate from 
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the totality of systems W (t) the setQ of all points Q lying closest to the point 5. 
The symbol &’ denotes the set of all unit vectors s directed from the point 5 to the 
points q from Q. As our @i”‘(t, 3 we choose the set of all vectors u = ue from U 
which satisfy the condition 

df(*) (t, 5, u”) = max s’f(l) (t, 5, u) w VI (2.4) 

for at least one s from S (the primes arc used here and below to indicate transposition). 
Thus, according to (2.4) the control u&t] (1.3) is selected by the extremal strategy 

U@t from the condition of maximum possible displacement of the phase point z It] 

towards the set W (t). 

3. The following statement is valid. 

Lemma 3.1. Let 5 [to] = z,, E W (t,). lf the sets W (t) (to < t < 6) are 
strongly stable, then the extremal strategy U(e) ensures that 

e” (il’“‘) ZZ 0 (3. If 

In other words, if the sets W (t) are strongly stable for all sufficiently small values of 
A > 0 , then the controls Us, [t] chosen by way of the extremal strategy IJ@), ensure reten- 

tion of the phase point x [t] (to< t < 6) in an arbitrarily small prescribed neighborhood 

of the sets W (tj (to d t <S) regardless of the actions of the second player. 
Verification of condition (3.1) is based on the following estimate. Let us write E [t] = 

= p (.T [t], M), where 5 [t] is the motion generated by the control ~“a [t] corresponding 

to the strategy Ute) and by some arbitrary permissible control realized in the form of an 

integrable function u*‘[t] E V.Let the state x [zi] be realized at some instant t = ri , 
and let the point I [%i].lie outside the set W (TV). 

Let us assume for the time being that at the instant t = y system (1.1) finds itself in 
the state zz = r* (zi) = q, where q is precisely the point from the set Q towards which 

the vector s of condition (2.4) is pointing (at t = Zi and 5 = 5 ITi])* 

Then, by Condition 2.1, the control u* [t] (ti < t < ti+J is associated with a control 
u* (t) (Zi < t < ri+i) such that the pair of controls {u, (t), Z.J* 111) carries system (1.1) 

from the position 2, (T& = p E W (ri) to the state 2s &+r) E W (r+r). 
We infer iiom this that the same pair of controls (u, (t), & f& would carry system 

(1.1) from the actually realized state x iTi1 to a state Z* &) such that 

p (z* (zi+i), w @i+J) d 8 [r’il + he ty,1 Fi+l -q + 6 t&- Ti) (3.2) 

where h is a constant and where the symbol a (a) denotes an infinitely small quantity 
of order higher than that of a. But replacement of the control u* (i) by the control 

$1 It] = @ I%*] E UP’ (Ti’ 2 Iz&) (r* <t <Ti+J 

which satisfies maximum condition (2.4) can result in a deterioration of estimate (3.2) 

by an amount not exceeding 0 (ri+r - TV). We therefore have the inequality 

i’ (5 [rZ.+r]t w (?+J) = a [Zi+i] < & [rJ + Xe [‘il(‘i+l - ‘i) $ O (‘i+l - zi) (3.3) 

which implies the validity of Lemma 3.1, (We must bear in mind that the estimate 

P (= !z,l* z tz**ll) = o fzi+l - '%I 
(3.G) 

is valid for all u (t) E U, v (1) E V. Here 0 (a) is an infinitely small quantity of order 
not lower than that of a). 

The same estimates enable us to verify the validity of the following lemma, 
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Lemma 3.2. Let M c W(t), W (6) = M and it: [t,] = x,, E CY (to). If 
the sets W (t) (t, <I t < 6) are stable, the extremal strategy ensures that 

&g (U(Q) = 0 i,2.5) 

In other words, if the sets ~1. (t) are stable for all sufficiently small values of A , then 
the controls 2,:’ [t] chosen by the extremal strategy Ute) ensure that tile phase point 

2 ItI behaves in such a way that it occurs at least once in an arbitrarily small prespeci- 
fied neighborhood of the set M for t< 6 whatever the permissible behavior of the second 

player. 
Note 3.1. The strategy Uce) constructed in Sect.2 is an approximating strategy 

which generates a piecewise-constant control u3. (” 1~1 of the form (1.3). However, under 
certain conditions this strategy can be formalized within the framework of differential 

equations in contingencies, as is done in DO-12, 181. Specifically, let the vector .\ 
occurring in condition (2.4) be unique for each state x not occurring in the set V’ (t) . 
We use the symbol F(l) (t, X) to denote the convex shell of the set which the vector 

f(l) (t, 9, U) as the vector u runs through LI. The symbol FCC) (t, X) denotes the set of all 
vectors f == fte) from If’(‘) satisfying the condition 

r sy ,(I,) = mas s’f (I E F(‘)) 

if 5 is not contained in w (t) , and only the condition 
f”” E F(l) 

if 3’ E W(t). 

(Ij.6) 

(3.7) 

We define the motion z It] (to < t < 6) of system (1.1) for some control v = 1’ [t] and 
for a generalized control u dictated by the strategy u(c) defined by the sets Fte’ (t, I) 

as any absolutely continuous function x [t] which satisfies the condition 

(3.8) 

for almost all values of t . 
The right side of (3. 8) contains a set of vectors / c:f the form f = f(@ + I’~) for J(e)e 

E &@‘. By virtue o f the above condition of uniqueness of the vector .i which is fulfilled, 
for example, if the sets IV (I) are convex, the extremal strategy uce) in the case of strongly 
stable sets Lc’ (t) ensures that 

I’ /.r [1], JV (t)) = (1 (to < t d 0) (3.9) 

provided x [to] E U- (t,,j whatever the behavior of the second player. Fulfillment of 
condition (3.9) is also ensured by the extremal strategy II(“) c FCC) (I, 5) in those cases 
where the second player is also using some generalized strategy V described by the sets 
F(‘) (t, x) , so that the motion .: It] is defined by the contingency 

(The symbol + represents the correspondence between the strat??gy and the sets defin- 

ing it). 
A similar remark can be made under the conditions of Lemma 3.2 by imposing the 

additional condition of uniqueness of the vector s in (1.3). 

4. Lemmas 3.1 and 3.2 imply that a strategy l_J which would guarantee convergence 
of the point 5 [t] to the set ;‘&’ cnn be constructed on the basis of the extremal strategy 
[J(p) provided one can find the sets w (1) (to 6;: 1 y< 6) satisfying the conditions of 

these lemmas (and also the condition bt/’ (6) =- ,$!I in the case of Lemma (3.1). Sucl 
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sets are derivable from constructions such as those described in [S-7], although the 
effective use of these constructions is somewhat difficult. We can approach the construc- 
tion of the required sets W (t) in a somewhat different way by using the notion of absorp- 

tion of the set M by process (1.1) at the instant 6 or by the instant 6 (from a given posi- 
tion {t*, 5*}, to < t, ,-< 6). 

This approach to game problems was proposed in p3] in connection with the conse- 

quent extremal aiming rule described in Sect.2 in the modified form of the extremal 

strategy U(e) ; it was later developed in DO-14-j. In this case, however, the properties 

of strong stability or stability of the sets w(t) (to.< ,$<s?) in the general case no longer 

follow automatically from the method of constructing these sets. One or the other of 
these properties must be additionally verified on the basis of the specific properties of 
the system (1.1) and the set M. 

We begin by citing two definitions which serve as a basis for describing the sets w (t) 

and then writing out sufficient conditions whose fulfillment ensures that these sets W (t) 
have the necessary stability properties. 

Definition 4. 1. We say that the set M is absorbed per program by process 
(l.l),(l.B) from the position {t*, IC* } at an instant 6 > t, if for any permissible 

function 21 (t) (t* < t < 6) we can choose a permissible function u (t) (t* .< t < 6) 

such that the motion CC (t) (X (t*) = x*) g enerated by the chosen pair of controls 

{u (t), 7~ (t) } satisfies the condition 
I (6) E M (4.1) 

Definition 4. 2. We say that the set M is absorbed per program by process(l.l), 

(1.2) from the position {t*, X* } by an instant 6 > t, if for any permissible function 

v(t) @* .s t (6) we can choose a permissible function u (2) (t* .< t < 8) such 

that the motion II: (t) (x (t*) = cr.*) g enerated by the chosen pair of controls {u (r), 

v (t) } satisfies the condition 

mint p (x,(t), M) = 0 (t* \< t < 6) (4.2) 

Let us assume that the number t, is fixed and that the number 6 > ta has been 

chosen in some way. We use the symbol W (t, 6) (t, G< t Q 6) to denote the set 
of all points 3 for which the set M is absorbed per program by process (1. l), (1.2) from 

the position {t, x} at the instant 6. If some sets IV (t) (t, 4 t -< 6) are strongly 
stable and if M = W (6), then 

W(t) C w (t, 6) (t, < t < 4) (4.3) 
However, the sets w (t, 6) need not be strongly stable. 
Next we use the symbol IV* (t, 6) (t, x< t -< 8) to denote the set of all points z 

for which the set M is absorbed per program by process (1. l), (1.2) from the position 
{t, S} by the instant ~9. If some sets l$’ (t) (t, NC’ t -s’ 6) dre stable and if w (6) =- 
= ,$f, then w (t) c w* (t, 6) (f” L 1 < 6) (4.4) 

However, the sets I+‘* (t! 6) need not be stable. 

By virtue of lemmas 3.1 and 3.2 and conditions (4.3). (4.4) the question of the con- 
ditions under which the sets I$’ (t, 6) or the sets 111” (t. a) are strongly stable or stable, 

respectively, has an important bearing on the problem of convergence of the point X [t] 
to the set M. In fact, the strong stability or stability of the respective sets implies (by 
virtue of Lemmas 3.1 and 3.X) that it is sufficient to take the extremal strategy Ii(() 

based on the sets w (2 8) or W* (t, 0)) respectively, as the required strategy 1i which 
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ensures convergence (1.4) or (1.5) of the point IC [t] to the set M. The following two 
lemmas specify certain sufficient conditions of strong stability of the sets w (t, 6) or 

stability of the sets w* (t, 6). 

We begin by setting out certain assumptions. 
Condition 4. 3. Assuming that the set u is convex, we stipulate (see DS]) that 

the vector j(r) (t,z, U) runs through the convex set F@)(t,s) as the vector u runs through 

U for all (t, 5). 

Let us suppose that we have chosen some position {t*, x* }, some number A,>0 , and 
some permissible function 2’ (t) (t* < 1 < t, + A). Let us consider the motions 
a_z (t) (t* < t < t, + A. x (t*) = z*) generated by the given control v = v (1) 
and by all the possible permissible controls u = u (t) (t* < t < t, + A). We denote 

the resulting set of points z -= z (1, f- A) by the symbol X (t*, x*, A, v (t)). 

Condition 4. 4. The set X (t*, IT*, A, v (t)) is convex for all {t*, x*}, 
v (t) and A Y< Ao, where A0 is a sufficiently small positive number. 

Let 5* E W(t*, 6). Ttien for any permissible function v (t) (t* < t < 6) there 
exists a permissible function u (t) (t * < t < 6) which together with v (t) brings the 
motion r (t) (IL: (t*) = a$) to the point 17: (6) c M. On the other hand, if IC* E. w* 

(t, 6), then for any permissible function v (t) (t* < t < 6) there exists a permissible 

function u (t) (t* G’ t < 6) which together with v (t) generates a motion x (t) satis- 
fying the condition IC (t*) : I%! (t* < 6). We assume that this procedure enables us 

to establish a certain correspondence between the permissible functions u (t) (t.+ ,<I 
\< t < 6) and the motions .T (t) (t, < t < fi). We denote this correspondence by 

the symbol v (t) - .z (t) . 
Now let us suppose that a certain point z* does not belong to w (t* 4 A, 6). Then, 

there exists a permissible function V* (t) (t.+ + A < t < 6) such that the motion 

x (t) (x (t* + A) = x*) g enerated by the controls {U (t), v* (t) } does not arrive 
at M at the instant 6 for any chosen permissible function u (t) (t* -1 A < t < 6). 
If the point z*does not occur in w* (t* +A,@), then there exists a permissibie function 
V* (t) (t* -j- A < t < 6) such that the motion a (t) generated by the controls {U (t), 

v* (t)} (z (t* + A) -= s*) d oes not arrive at M for any t from the segment [t, -+- 
+ A, 61 no matter what permissible function u (t) (t* + A :< t < 6) is chosen. 

Let us suppose that this enables us to establish a certain correspondence between the 
points .z* and the functions U* (t) (tr + A .< t < 6). We denote this correspondence 
by the symbol z* -b D* (t). Further. let the function v (t) be defined in some way for 

t * ~1 1 < t, + A, and let it coincide with some function v* (t) for t, -t_ A :< 
*< t<o. 

Then, by virtue of what we have already said, the chosen position {t*, z.+ } can be 

matched with a mapping I* --+ x (t* + A) which is defined by the two corresonden- 
ces x* -+ u* (t) and v (t) --•f z (t) (u (t) = v* (t) for t, + A < f <a). 

Condition 4. 5. Whatever the position {t*, x*} (x* E w (t*, 6) or z* e 

E w, (t*, fi)), the function u (t) (t* -< t (t, + A) , and the sufficiently small num- 
ber A > 0, it is possible to choose a mapping a* -+ x (t* + A) which is continuous 
(i.e. in domains where s*does not occur in w (t* $- A,B) or in W* (t* + A, 6). 
respectively ). 

The following statements are valid. 
Lemma 4.1. If Conditions 4.3-4.5 are satisfied, the sets w (t, 6) are strongly 
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stable. 
In fact, let us suppose that this is not the case. Then for some position (tr, +), where 

z* E W (tr, e), for some arbitrarily small A > 0 , and for a suitably chosen u (t) (t* < 
<t<t*+A)thesetX(t,, z*, A, u (t)) does not have points in common with W (t* + 

-I- A, 6). (We muSt bear in mind that by Condition 4.3 the set X (t*, x*, A, u (t)), as well 
as all the sets W (t, 6) are closed (see [15, 181)). But Condition 4.5 can then be used 
to construct a continuous mapping of this set into itself. According to a familiar theo- 

rem (see [16], p.296. Theorem 5) this mapping has a fixed point 5’. But the preceding 
constructions imply that the motion 5 (t) passes through this point for t = t* + A ; on 

the one hand this motion arrives at the set M at the instant 6 ; on the other hand this 

motion z (t) cannot arrive at this set M at the instant 6 . The resulting contradiction 
proves the lemma. 

The following lemma can be proved in similar fashion. 
Lemma 4.2. If Conditions 4.3 - 4.5 are fulfilled, the sets w’* (t, ti) are stable. 
The following statement follows directly from Lemmas 3.1,3.2,4.1 and 4.2. 

Theorem 4.1. Let ZIJ E w(t,, 6) or x0 E w* (to, 6). If Conditions 4.3- 

-4.5 are satisfied, the extremal strategy UC’) based on the sets W (t, 6) or w* (t, 6) 

guarantees convergence of the point z [tl with the set M either at the instant 6 or by 
the instant 6 , respectively. 

Note 4.1. Condition 4.5 can be generalized somewhat in the followng way. First, 

the correspondence v (t) -b z (t) can be replaced by the correspondence v (t) .+ {z (t)}, 
where {z (t)) is no longer the single motion z (t), but rather a whole family of motions 

15 (t)), each of which has the necessary property of convergence with the set M. The 
correspondence x* -, v* (t) can likewise be replaced by the correspondence X* -+ {v* (t)}, 

where {u* (t)) is again some set of controls V* (t), each of which ensures the required 

deviation of the motions x (t) from M. As above, these two correspondences define the 

mapping I* --f, -+ {Z (t* + A)} of the points zf onto the sets {z (t* i- A)). We can now 
replace our original Condition 4.5 by the following statement. 

C on d it i o n 4.5.. Whatever the position {t*. ~1 (x1 E W (t*,*) or x* E W* p.,s)), 
the function v (t) (t* < t < t, + A), and the sufficiently small number A > 0, the map- 

ping x* - {.z (t* + A)} can be chosen in such a way that the sets {x (tei- A)1 are convex, 

closed, and semicontinuous above the inclusion (by the variation of I* in domains where 

x does not occur either in W (t* + A, 6) or in W* (t* -i- A, 6), respectively). 

Lemmas 3.1, 3.2, and Theorem 4.1 remain valid upon replacement of Condition 

4.5 by Condition 4.5.. However, Lemmas 4.1 and 4.2 must now be proved not on the 
basis of Theorem 5 of p6], but rather by means of the theorem of fl7-j whereby Condi- 
tion 4.5’ implies the existence of a point x0 E (2 (t* + A)P, where z” -, (x (t* + A)y, 
for the mapping X* 4 {xc (t* + A)}, and this again yields the necessary contradiction. 

6, The formulation of Condition 4.5, which plays a fundamental role in the hypothe- 
ses of Theorem 4.1, is too general for ready verification. In this section we shall cite a 

certain condition which throws some light on the circumstances of Condition 4.5. To be 
specific, we shall confine our attention to the case of absorption of the set M at the 
instant 6. The case of absorption of the set M by the instant + entails similar analysis 
of system (5.1) below, but requires allowance for certain additioanl details. 

Let us suppose that Eq. (1.1) is of the form 
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dxidt = f (t, x) -f-B (t)u + 6’ (t)u (5.1) 

where B (t) and c (t) are continuous matrices of functions of the corresponding dimen- 

sions. We assume that the sets u and I/ in conditions (1.2) are convex. Condition 4.3 

is then satisfied automatically. 13y transforming system (5.1) we can always ensure that 

the set u contains a zero vector. This allows us to assume that the indicated condition 

is fulfilled. 

Let us suppose that the point x*does not occur in the set W (t*, 6). This enables us 

to find the pair of controls {u* (t), ZJ* (t)} which solve the problem 

p (X* (G), M) = max y$ p (x (0). M) 
7:(/j 

i 5 . 2 ) 

where X* (t) (t* Y< t < 0, 5 (t*) = z*) is the motion generated by the controls 

{11* (t), V* (t)}; the maximin must be computed over all the integrable functions 

U (t) kE u, 2, (t) GE 1’ (t* -< t (6). b ‘e infer from the definition of the set rv (t*, 
and from the choice of the point Z*outside this set that the resulting maximin 

l%ds a positive value of p (X* (a), M). 

Condition 5. 6. The function v* (t) which yields the solution of problem (5.2) 

is unique (essentially over the half-interval [t*, 6)) for any position {t*, x*}, where 

X* does not occur in CV (t*. 6). 
Now let the point &+ 6% 1 I7 (t*, 0) and let ~1s suppose that we have chosen some per- 

missible function v (t) (t* t< t (6). Let us find the smallest of the numbers p for 

which there exists a function II,,, (t) E ~(1 (t* <. t < 0) satisfying the condition 

p (XP (6), M) = 0 (S.3) 

Here 3+(t) (t* < f c< 6, .$ (t*) = z,) is the motion generated by the controls 

i+(t), v (t)}; the symbol pff represents the set of vectors of the form u = pU”, 

where U* 6’ u. From the definition of the set w (t*, 6) and the choice of the point 

X* Tom this set we infer that pc , the smallest of the uumbers IL for which liq. (5. ::) call 

he fulfilled, is not larger than unity. 

1 .onditioil r-1, 7. The solution of problem (5. 3) for /A = &I,” is attained on the 

unique motion +0(t) for any position {t*, LC~:}, where X* E w (t*, 6) and for any 

pe.rmissible function 8 (t), 

The following statement is valid. 

:,emnia ‘5, 1, I~ulfillrr~ent ofConditions 5. 6 and S. 7 implies fulfillment of Condi- 

i.1011 4. 5. 

In fact, let us set t* = t, 4. 1. The relation x* -+ P* (1) under Condition 5. ci can hc 

Ljetermined by choosing precisely the solution of problem (5.2) as our v* (t) . The rela- 

rion u (t) -+ z (f) can be deterrrlined from (‘ondition h. ;’ by taking the motion zP, (t) as 

IJill Z ii) . 

?:'e fnust no\% verify w!it’tl,i.r t;le mappii,g J* - .rP. (r, mi- A) is continaous. Let il.5 

suppose that this is not the case. This implies the existence of a sequence of points 

.,-ci!(t- 1. 2. . ..j whicll ccrnverge to the point s* and are such that the corresponding points 

.~[,:i (!, ; -1) do not approacFi the point d’iLd (t.+ + A). h’e can select a weakly convergent 

subsequence from the sequence c,f functions I‘ (i’ (t) (I* .1 ~1 / d, it). 

14,‘~ can show that tile weak iitriit 7 f/i E 1 iI* 1 ‘- I < ill of this subsequence is 

I!:? snl,ltion of problem (.S. 1) for tile point I+ Then, by Condition 5. ii. jJu (I) :z U* (;I 

i tn< enables u\ to isoiatt irc~i, Tiie ;e.jllrncc I$) (I) a subsequence which converges to 
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the function x,,,., (t), which by Condition 5.7 is the unique function which solves problem 

(5.3) for u (t) = P (t) (t* + A < t < fi). But this contradicts our supposition. The con- 
tradiction proves the lemma. 

Note 5.1. It is useful to compare Conditions 5.6 and 5.7 with those sufficient 
conditions of strong stability of the sets w (t, B) which are known to be valid for linear 

systems provided the set M is convex (e. g. see PO-12, 181). These conditions can be 
formulated as follows. 

Let system (1.1) be described by the linear equation 

dzjrtt- A (t)r + B (t)~ - C (i)~ -i+ f (t) (5.4) 

Moreover, let the sets CT and V in conditions (1.2) be convex and let the set IV also 

be bounded and convex. The point x then occurs in l%’ (t, ,I?) if and only if 

x (&., 6, I) $ 1’ Q (6, t*) I > 0 (5.5) 

whatever the unit vector 1. Here the function r. (t*, 6, I) is defined by the equation 
0 

x (t*, 6, 1) = X(l) (t*, 6, I) -x(X’ (t 6 1) *, I _t 1t 
s Q (6, T) f (r) dx (3.6) 

I* 

where x(‘) (t*, 6, 1) and x(l) (t*, 0, 1) are the support functions of the attainability 
domains from the position {t*, x (t*) = O} for the motion x (t) (5.4) by way of v (t) E V 

and “g (t) = u (t) + p6 (t -B), where u (t) E Cu - p E M . The symbol 6 (tJ repre- 
sents the fi -function a 

(5.7) 

where CD (1, T) is the fundamental matrix of solutions for the homogeneous equation 

d;c i tit = A (i) I. The results of [lo-121 imply that the sets W (t, 6) are strongly stable 

if, provided that min (X (t, 6, 1) + 1’Q (6, t) = + e) = 6 (5.9) 
1;111=1 

where E > 0, the minimum in the left side of (5.9) is attained on the unique vector I 

(the symbol ]I 111 represents the Euclidean norm of the vector 1). 

Fulfillment of Conditions 5.6 and 5. I clearly implies the fulfillment of this condition, 
Generally speaking, however, this condition is somewhat weaker than Conditions 5.6 and 

5.7. 
On the other hand, making use of the more general theorem concerning a fixed point 

in the case of multivalued mappings [17] as we did in Note 4.1, we obtain strong stabi- 
lity conditions which are entirely analogous to the above conditions of uniqueness of the 
minim izing vector 1 in (5. 9). 

We also note that maximum condition (2.4) differs from the extremal rule PO-121 
in minor details only. 

Finally, we emphasize that the sets 1%’ (t, 6) in the above linear case are necessarily 
convex. The vector s in condition (2.4) is therefore necessarily unique, so that (in 
accordance with Note 3.1) the extremal strategy U(@ is also formalizable within the 
framework of differential equations in contingencies in all cases. 



198 N. N. Krasovskii 

BIBLI,OGRAPHY 

1. Fleming, W. H., A note on differential games of prescribed duration. Ann. 
Math. Studies, (pp. 407 - 412), w39, 1957. 

2. Kelendzheridze, D, L., On a certain optimal pursuit problem. Avtomatika 

i Telemekhanika Vo1.23, Np8, 1962. 

3. Nardzewski. C, R, , A theory of pursuit and evasion. Adv. in Game Theory. 

Ann. Math. Studies., 1964. 

4. Isaacs, R., Differential Games (Russian translation), Moscow, “Mir”, 1967. 

5. Pontriagin, L. S., On linear differential games. 2. Dokl. Akad. Nauk SSSR 

Vol.175, Np4, 1967. 

6. Pshenichnyi, B. N., The structure of differential games. Dokl. Akad. Nauk 

SSSR Vo1.184, Ne2, 1969. 

7. Nikol’skii, M, S., Nonstationary linear differential games. Vestnik Mosk. 

Gos. Univ., Ser. Mat. Mekh. NQ3, 1969. 

8. Varaiya. P. and Lin, J., Existence of saddle points in differential games. 

SIAM Journal, Control, Vol.7, I@l, 1969. 

9. Petrov. N. N., On the existence of a pursuit game value. Dokl. Akad. Nauk 

SSSR Vol.190, w6, 1970. 
10. Krasovskii, N. N., On a differential convergence game. Dokl. Akad. Nauk 

SSSR,Ser. Mat. Fiz. Vol. 182, N’6, 1968. 

11. Krasovskii. N. N., Regularization of a certain differential game. Izv. Akad. 

Nauk SSSR, Tekh.Kibernetika, N’l, 1969. 

12. Krasovskii, N. N. and Subbotin, A. I., Optimal strategies in a linear 

differential game, PMM Vol. 33, w4, 1969. 

13. Krasovskii, N. N., On a problem of tracking. PMM Vol. 27, NL2, 1963. 

14. P s h e n i c h n y i , B , N. , Linear differential games. Avtomatika i Telemekhanika 

I+l, 1968. 

15. Filippov, A. F. , On certain problems of optimal control theory. Vestnik Mosk. 

Gos. Univ. , Ser. Mat. Mekh.N’2, 1959. 

16. Danford, N. and Schwarz, J., Linear Operators. Vol. 1, Moscow (Russian 

translation), Izd. inostr. lit., 1962. 

17. Kakutani, S., A generalization of Brouwer’s fixed point theorem. Duke Math. 

J., Vol. 8, Nj?3, 1941. 

18. Krasovskii. N. N., A differential convergence game. The first coarse case. 

Differentsial’nye Uravneniia Vol. 5, N’3, 1969. 

Translated by A.Y. 


